
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

ROS Message Transport over Underwater Acoustic

Links with ros_acomms

Eric Gallimore

Applied Ocean Physics and

Engineering

Woods Hole Oceanographic

Institution

Woods Hole, USA

egallimore@whoi.edu

Dennis Giaya

Applied Ocean Physics and

Engineering

Woods Hole Oceanographic

Institution

Woods Hole, USA

dgiaya@whoi.edu

Brennan Miller-Klugman

Applied Ocean Physics and

Engineering

Woods Hole Oceanographic

Institution

Woods Hole, USA

bmillerklugman@whoi.edu

Caileigh Fitzgerald

Applied Ocean Physics and

Engineering

Woods Hole Oceanographic

Institution

Woods Hole, USA

cfitzgerald@whoi.edu

Kayleah Griffen

Applied Ocean Physics and Engineering

Woods Hole Oceanographic Institution

Woods Hole, USA

kgriffen@whoi.edu

Laura Lindzey

Ocean Engineering Department

University of Washington

Applied Physics Laboratory

Seattle, USA

lindzey@uw.edu

Lee Freitag

Applied Ocean Physics and Engineering

Woods Hole Oceanographic Institution

Woods Hole, USA

lfreitag@whoi.edu

Abstract— A software framework, “ros_acomms,” has been

developed to enable transport of ROS messages and other data

across low-throughput and high-latency underwater acoustic

links. Messages are efficiently marshalled using user-provided

configuration data, if available, or automatically via message

introspection. A modular set of modem drivers, media-access-

control engines, and message queues transport messages from one

system to another via a modem. It supports message

fragmentation, positive acknowledgment, and custody-transfer

routing. It also includes an acoustic link simulator that uses a ray-

tracing model to estimate link performance and latency. While it

targets the WHOI Micromodem family of acoustic modems, the

modular modem driver implementation has been leveraged to

support low-throughput Iridium satellite links and other acoustic

modems. It has been tested and used operationally at sea for

remote redirection of autonomous underwater vehicles while

providing operators with near real time vehicle telemetry and

sensor data.

Keywords—underwater acoustic communication, ROS, codec

I. INTRODUCTION

Ros_acomms provides a complete framework for efficiently
transferring messages across underwater acoustic links. Robot
Operating System (ROS) [1] messages can be sent with minimal

configuration, and the included encoder/decoder (codec) engine
will use message introspection to determine how field values
should be encoded. All ROS message primitive types are
supported, including arrays and nested ROS messages. Users
may optionally provide additional information about the fields
in a message (such as the range of expected values or desired
resolution) via a configuration file, which is used to compress
and bit-pack data more efficiently.

Reliable transport (via positive acknowledgement and
retransmission) and large message fragmentation are provided.

This allows sending files and messages larger than the maximum
acoustic packet size.

MOOS messages [2] may also be transferred via a
companion package, the moos_bridge, and the message coding
scheme can also be used to encode arbitrary Python dictionaries.

The framework is designed to co-exist with other acoustic
traffic, including interoperating with older standards such as the
Compact Control Language (CCL).

It is designed against the WHOI Micromodem acoustic
modems [3], [4], although the modular modem driver
implementation supports integrating other modems. The system
has also been extended to support low-throughput Iridium
satellite communication links. There is a companion package,
ros_iridium, that uses the ros_acomms message queuing and
marshalling system to transfer messages via the Iridium satellite
network.

In addition to supporting the WHOI Micromodem, it
includes an acoustic communication simulator to facilitate
software-only development and testing.

It is released under open source (LGPL/AGPL) licenses.

II. BACKGROUND

A. Message Marshalling

Underwater acoustic communication links are inherently
low-throughput and high-latency when compared with the radio
links commonly used with terrestrial robots [5]. Thus, care is

required when using underwater acoustic communication for
robot telemetry, command, and control. Often, data must be
compressed prior to transmission to communicate effectively.

Many commonly-used data marshalling protocols are not
optimized for low-throughput links. Formats such as JSON [6],

This work was funded in part by the National Oceanographic and

Atmospheric Administration, the Office of Naval Research, the National

Science Foundation, and the Woods Hole Oceanographic Institution

MessagePack [7], and Concise Binary Object Representation

(CBOR) [8] provide fully-descriptive encoded forms: message

content can be extracted without knowing the schema used to
encode it. While this feature offers obvious advantages, it
requires embedding message type information within the
message, which increases the amount of data that must be
transmitted. This overhead is undesirable and generally
unacceptable when using very-low-throughput links.

Formats such as Google Protocol Buffers are not fully
descriptive and provide a mixed optimization for size and
encoding/decoding speed [9], but encoding/decoding speed is

not typically a limiting factor when transferring data via acoustic
links.

Several marshalling systems targeted at robotics applications
improve upon these schemes, but still carry unacceptable
overhead due to the use of header information and failing to bit-
pack field data. The ROS1 ros_comm messaging scheme is
simple, not fully descriptive, and relatively compact. However,
each non-array field type has a fixed bit length of at least one
byte, and each message includes header information. ROS2 uses
DDSI-RTPS, which also includes header information and byte-
aligned, fixed-length fields [10]. Lightweight Communications

and Marshalling (LCM) includes a marshalling scheme that is
relatively efficient, but it prepends a 64-bit fingerprint to each
message to identify its type. It is also optimized for speed, and
uses byte-aligned fields [11].

Several marshalling schemes have been developed
specifically for transporting data over acoustic links. One early
effort at standardization was the Compact Control Language
(CCL) [12], which is still widely used with the REMUS family

of AUVs. CCL was designed to match the contemporary
capabilities of the WHOI Micromodem-1 and its predecessor,
the Utility Acoustic Modem (UAM) [13]. As a result, all

messages are exactly 32 bytes in length, which corresponds with
the length of a legacy Micromodem FSK packet. All message
types are defined in a specification document [14], and specific

field encoder/decoders are provided as C functions. CCL is
often coupled with a basic call-and-response query system to
request messages from a remote node, or a periodic transmission
cycle.

A more recent development in this area is the Dynamic
Compact Control Language (DCCL), which provides a runtime-
configurable mechanism for marshalling messages based on
extensions to Google Protobuf message definitions [15], [16].
This system does not require fixed message sizes. It is often
coupled with Goby, a middleware library that provides modem
interfaces and networking functions [17]. DCCL formed much

of the inspiration for the codec system described here.

The implementations of both CCL and DCCL assume that
all message types are registered with a central authority. In
practice, many developers define new message types and either
use reserved private message identifiers that are set aside by the
registration authority or simply use otherwise-unused identifiers
with the assumption that their systems won’t have to
interoperate. Additionally, many acoustic modem users do not
use any of these standardized message marshalling schemes and
instead define their own.

Ros_acomms specifically addresses this issue by allowing
different sets of message encodings to be used for
communication with different remote modems. Additionally,
there is a CCL-compatible codec included in the ros_acomms
suite, so that CCL messages can be sent and received. The codec
system was designed with DCCL compatibility in mind, and
early versions included some rudimentary DCCL
interoperability, but this has not been maintained due to a lack
of current applications.

B. Message queueing and quality of service

On practical communication links, it is often not possible to
instantly transfer all data required by an application. To address
this limitation, which is particularly concerning when using
underwater acoustic links that are low-throughput and high-
latency, ros_acomms implements a message queuing system
that supports configurable-length queues with runtime-
adjustable message prioritization.

Queues allow messages to be sent in first-in-first-out (FIFO)
order or last-in-first-out (LIFO) order. In many robotic
applications, such as sending vehicle status or pose information,
newer messages render older ones obsolete, and the LIFO queue
ensures that unnecessary older data aren’t sent.

Message prioritization can ensure that more important data
are transferred sooner. Ros_acomms allows users to specify a
default priority for each topic being sent via the configuration
file, and these priorities can be changed at runtime via acoustic
messages.

C. Fragmentation, Reliable Transport, and File Transfer

Communication links typically have a maximum
transmissible unit (MTU), which is the largest amount of data
that can be sent in a single unit such as a frame or packet. To
send messages or data larger than the MTU on a given link, data
must be fragmented at the transmitter and reconstructed at the
receiver.

Many existing fragmentation protocols are not optimized

for the limited channel reliability, high latency, and low

throughput associated with underwater acoustic links. The

Transmission Control Protocol (TCP), for example, is

commonly used in conjunction with the Internet Protocol (IP)

and provides end-to-end reliable and ordered transport of a

stream of bytes. TCP specifies data headers that are minimally

20 bytes long per datagram if no options fields are utilized[18];

this is an acceptable amount of overhead for an IP datagram that

may contain up to 65,535 bytes [19]. In the context of an

acoustic link where the maximum frame size is typically

between 32 and 256 bytes and the maximum packet size is

typically less than a few kilobytes, 20 bytes of header per frame

is a significant cost to the total data throughput. The three-way

handshake to establish a TCP connection is another feature that

penalizes high-latency and unreliable links. In the event that

communication opportunities are sporadic and only allow time

for a single transmission, it becomes critical to include data in

the initial transmission rather than dedicating it to the specific

sync sequence.

The specification for a Delay-Tolerant Networking

Architecture (DTN) addresses many of the shortcomings that

TCP and other Internet protocols exhibit when operating on

unreliable or high latency links [20]. The ros_acomms

fragmentation protocol draws inspiration from features of DTN

such as performing custody transfers of bundles between nodes

in the network, delivering messages in order of priority, and

selectable delivery options in order to cater to the circumstances

of a particular acoustic environment. However, DTN is not

optimized for low-throughput links such as underwater acoustic

links.

D. Acoustic modem features

Ros_acomms supports modern acoustic packet protocols
available on the WHOI Micromodem-2, in addition to legacy
acoustic packets also supported by the Micromodem-1.
Ros_acomms effectively leverages the Flexible Data Packet
system on the Micromodem-2, which allows sending a single
acoustic packet that uses multiple error correction coding levels
to include both high-reliability/low-throughput data and lower-
reliability/higher throughput data. This is commonly used to
allow a single packet to include critical information, such as
AUV position and status, in the high-reliability section, and
science or image data in the high-data-rate section.

Acoustic timing and ranging features of the Micromodem
are also supported, allowing ros_acomms to integrate with
acoustic navigation systems.

III. ARCHITECTURE

A. Message transport flow

A primary goal of the project is to support “transparent”, bi-
directional transport of ROS messages published on one
platform, such as an autonomous underwater vehicle, and re-
publishing them on a different platform, such as different

vehicle or operator computer (and vice-vera). Configuration of
the system is done via rosparams, typically as a YAML file
containing a list of ROS topics to transport along with
instructions for how to encode those messages, as shown in
Listing 1.

Messages are transferred as described below and in Figure
1. On the transmitting system:

1) A ROS message is published on a topic

2) The message queue node is subscribed to this topic.

3) When a new ROS message is received, the message

queue node uses a message codec to convert the data in the

message to a compact representation by using field codecs to

encode each message field. This is done recursively for nested

ROS messages.

4) The media access control (MAC) node, typically a time-

division-multiple-access (TDMA) MAC, queries the message

queue node to retreive the highest priority message(s).

5) The message queue node identifies the highest priority

message and uses an appropriate packet codec to pack as many

messages as will fit into one modem packet for transport.

- codec_name: default

 match_dest: [100]

 except_src: [1, 5]

 packet_codec: ros

 miniframe_header: [0x12]

 message_codecs:

 - id: 1

 message_codec: default

 subscribe_topic: "/status"

 publish_topic: "/from_acomms/status"

 ros_type: "my_auv_pkg/Status"

 default_dest: 99

 queue_order: lifo

 queue_maxsize: 1

 priority: 100

 fields:

 header:

 codec: msg

 ros_type: "std_msgs/Header"

 fields:

 stamp:

 codec: rostime

 latitude:

 codec: float

 min_value: -90

 max_value: 90

 precision: 5

 longitude:

 codec: float

 min_value: -180

 max_value: 180

 precision: 5

 amperage:

 codec: linspace

 min_value: 0

 max_value: 10

 resolution: 0.2

Figure 1: Message flow within ros_acomms

Listing 1: Example ros_acomms codec and queue configuration.

6) The MAC node queues the modem packet for transmit

using the modem driver (the acomms driver node), which

interfaces to the modem hardware to send the packet

acoustically. (Alternately, when using the acoustic modem

simulation built into ros_acomms, the acoustic communcations

simulator node replaces the modem driver node.)

On the receiving system:

7) A packet is received by the acoustic modem.

8) The acomms driver node handles the incoming packet

and publishes a ReceivedPacket message.

9) The packet dispatch node subscribes to these messages.

10) The packet dispatch node evaluates metadata on the

packet message (such as the acoustic modem source address

and optional header bytes) and determines which packet codec

should be used to decode the packet.

11) The packet codec uses one or more message codecs to

decode the received data into ROS message(s).

12) The packet dispatch node publishes the message on a

ROS topic.

An arbitrary number of systems are supported, each of which
can both send and receive messages.

Custody-transfer routing can be performed by sending
messages to an intermediate platform, which then sends those
messages on to a subsequent platform. This can be used to send
messages over different links, such as an acoustic channel
operating at a different frequency or a satellite link.

B. Message Marshalling and Codecs

Ros_acomms uses a layered set of encoders/decoders
(codecs) that operate at the field, message, and packet level.
Each message consists of multiple named fields, each of which
contains a datum. Each field may contain a primitive type, such
as an integer or string, or nested message type. Packets
correspond to the atomic unit of data that can be sent by a
modem at one time. A packet may contain a single message,
multiple messages, or part of a fragmented message.

The codecs are implemented using base classes such that
novel field codecs, message codecs, and packet codecs may be
developed. For example, packet codecs can be written to
interoperate with other standards, such as CCL.

The selection of which field codecs to use on a message is
determined via a configuration file, as shown in Listing 1. If no
field codecs are specified for a message in the configuration, the
message codec engine will introspect the ROS message being
sent and use appropriate field codecs for each field in the
message. Even when using introspection, the resulting message
size is smaller than the default ROS message serialization,
largely because ROS message serialization adds headers and
byte aligns all fields, including booleans and 7-bit ASCII string
characters.

Each field in the message can be assigned a codec with
parameters, which improves the efficiency of message
compression. Both lossy and lossless codecs are available for

most ROS message field types. For example, floating point
numbers may be encoded as fixed-decimal values or linearly-
spaced ranges. Strings are encoded by default with bit-packed
7-bit ASCII, but users may select a 6-bit ASCII encoding that
includes only uppercase letters and fewer special and
punctuation characters. Similar options exist for most field
codecs.

C. Fragmentation, Reliable Transport, and File Transfer

The ros_acomms fragmentation protocol ensures reliable
transport of ROS messages that, when encoded, are larger than
the MTU of the link, which can vary. The concept for transfers
models DTN; a ROS message is analogous to a bundle in DTN.
The message can be fragmented to a variable block size to
accommodate varying quality links and the queued fragments
are transmitted in order of priority to reachable link destinations.
It also borrows an acknowledgement scheme similar to TCP
Selective Acknowledgement to minimize the amount of data
that must be re-transmitted when the receiver ends up with
discontinuous fragments of the original message.

Recognizing the bandwidth constraints of underwater
acoustic links, the protocol is designed to minimize the required
size of fragment headers, as described in Tables 1-3. Transfers
are organized into sessions and utilize a 14-byte session start
header, a 5-byte session continuation header, and an
acknowledgement header that is minimally 6 bytes, but varies
based on the number of discontinuous block segments being
acknowledged. In practice, each header requires an additional
byte prepended: the ros_acomms message identifier.

TABLE I. SESSION START HEADER

Field Size

Session ID 8-bits

Session Source ID 8-bits

Session Dest. ID 8-bits

Timestamp 32-bits

Block size (bits) 8-bits

Message size (blocks) 16-bits

First block index 16-bits

Last block index 16-bits

TABLE II. SESSION CONTINUATION HEADER

Field Size

Session ID 8-bits

First block index 16-bits

Last block index 16-bits

TABLE III. SESSION ACKNOWLEDGEMENT HEADER

Field Size

Ack. Flag 1-bit

N_Blocks 7-bits

Session ID 8-bits

Block start index[0] 16-bits

Block end index[0] 16-bits

block start index[n] 16-bits

Block end index [n] 16-bits

Each session is uniquely identified through the 8-bit session
ID combined with the source ID. In this manner, each individual
source is able to keep track of open sessions and avoid re-using

a session ID that has not been acknowledged. To avoid the
penalty of long two-way-travel-times, a sender may include data
up to the full size of a packet with the session start header.
Additionally, the sender may proceed to send packets continuing
the session before waiting to receive acknowledgement if so
configured by the medium access controller node.

Acknowledgement headers comprise a list of received
blocks as described by the start and end index for each
contiguous section in multiples of the block size. The ack flag is
set to describe blocks as positively acknowledged, or
“ACKED”, and it may be cleared to indicate that the list will
describe only the blocks that are still outstanding, or
“NACKED”. The decision is made to send whichever results in
the shorter of the two lists. Acknowledgement containing the
zeroth block of a message indicates acknowledgement of the
session start header back to the sender. Specifically sending a
null acknowledgement for the zeroth block indicates to the
sender that one or more session continuation packets were
received for which the receiver does not have the full session
start header information and will trigger a retransmit from the
sender.

D. Software components and libraries

Ros_acomms is designed using modular ROS nodes that
allow individual functions to be developed in a research setting
without requiring changes to the rest of the system. For
example, different media access control methods can be
implemented by replacing only the MAC node.

Additional modems can be supported by any node
implementing the modem driver interface, which has been used
to develop drivers for Sonardyne acoustic modems and Iridium
satellite modems. This interface also allows the acoustic
communication simulator to be used in place of actual acoustic
modems.

Ros_acomms incorporates several separately packaged
libraries. Pyacomms, an interface library for the WHOI
Micromodem, is used by the modem driver node to
communicate with the modem. The message and field codecs
are packaged as “ltcodecs” (for “Low Throughput Codecs”).
These libraries are maintained by the WHOI Acoustic
Communications Group and published on PyPi.

To operate over Iridium satellite links, a separate package,
ros_iridium, provides a MAC node and modem drivers for
Iridium modems and the RUDICS shore-side server. The
message queues and codecs from ros_acomms are used without
modification.

IV. SIMULATION

The base ros_acomms package includes a simple acoustic
communication simulator. It uses the Bellhop raytracing model
[21] to determine path transmission loss between two simulated
modems. The effect of acoustic collisions (interference from
other modems transmitting at the same time) is modeled.
Configurable, time-varying noise is added, and the signal
margin at the receiver is calculated. This is then used with an
empirically-derived communication performance model to

simulate channel performance, including both latency and
packet success or failure.

V. DEPLOYMENTS

To date, ros_acomms has been deployed on a variety of
oceanographic platforms, including REMUS AUVs,
WaveGlider ASVs, DSV Sentry, acoustic gateway buoys, shore-
side systems, and shipboard operator consoles. It has been used
operationally to support research and scientific objectives.

A more detailed discussion of its use in the NOAA
CoExploration program may be found in [22].

VI. FUTURE DEVELOPMENT

Ros_acomms is being used to perform underwater acoustic
networking research, and as this matures, additional networking
capabilities will be incorporated into the package.

A ROS Actions proxy is under development to facilitate
remote command execution. It builds upon the fragmentation
and acknowledgment system to provide asynchronous progress
notifications as messages are passed between systems.

ACKNOWLEDGMENT

The authors wish to thank Dr. Ian Vaughn and Dr. Toby
Schneider for fruitful conversations that informed the
development of this system. They thank Isaac Vandor for his
contributions to ros_acomms and his helpful suggestions for
architectural improvements.

REFERENCES

[1] M. Quigley et al., “ROS: an open-source Robot Operating System,” in

ICRA workshop on open source software, 2009, vol. 3, p. 5.

[2] Oxford Mobile Robotics Group, “MOOS : Main - Introduction.”

https://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php/Main/Int

roduction (accessed May 27, 2022).

[3] E. Gallimore, J. Partan, I. Vaughn, S. Singh, J. Shusta, and L. Freitag,

“The WHOI micromodem-2: A scalable system for acoustic

communications and networking,” in OCEANS 2010, Sep. 2010, pp. 1–

7. doi: 10.1109/OCEANS.2010.5664354.

[4] L. Freitag, M. Grund, S. Singh, J. Partan, P. Koski, and K. Ball, “The

WHOI micro-modem: an acoustic communications and navigation

system for multiple platforms,” Washington, DC, USA, Sep. 2005.

[5] M. Stojanovic, “On the Relationship Between Capacity and Distance in

an Underwater Acoustic Communication Channel,” in Proceedings of

the 1st ACM International Workshop on Underwater Networks, New

York, NY, USA, 2006, pp. 41–47. doi: 10.1145/1161039.1161049.

[6] P. Charollais, “ECMA-404, 2nd edition, December 2017,” p. 16, 2017.

[7] “MessagePack.” MessagePack, Apr. 28, 2022. Accessed: Apr. 28, 2022.

[Online]. Available:

https://github.com/msgpack/msgpack/blob/8aa09e2a6a9180a49fc62ecfe

fe149f063cc5e4b/spec.md

[8] C. Bormann and P. E. Hoffman, “Concise Binary Object Representation

(CBOR),” Internet Engineering Task Force, Request for Comments

RFC 8949, Dec. 2020. doi: 10.17487/RFC8949.

[9] “Overview | Protocol Buffers | Google Developers.”

https://developers.google.com/protocol-buffers/docs/overview (accessed

Apr. 28, 2022).

[10] Object Management Group, “The Real-time Publish-Subscribe Protocol

DDS Interoperability Wire Protocol (DDSI-RTPSTM) Specification

Version 2.5,” OMG Standard ptc/2021-03-03, Mar. 2021. Accessed:

Apr. 28, 2022. [Online]. Available: https://www.omg.org/spec/DDSI-

RTPS/2.5/PDF

[11] A. S. Huang, E. Olson, and D. C. Moore, “LCM: Lightweight

Communications and Marshalling,” in 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems, Taipei, Oct. 2010, pp.

4057–4062. doi: 10.1109/IROS.2010.5649358.

[12] R. P. Stokey, L. E. Freitag, and M. D. Grund, “A Compact Control

Language for AUV acoustic communication,” in Oceans 2005 - Europe,

Jun. 2005, vol. 2, pp. 1133-1137 Vol. 2. doi:

10.1109/OCEANSE.2005.1513217.

[13] L. Freitag, M. Johnson, M. Grund, S. Singh, and J. Preisig, “Integrated

acoustic communication and navigation for multiple UUVs,” in

MTS/IEEE Conference and Exhibition OCEANS, 2001, 2001, vol. 4, pp.

2065–2070 vol.4. doi: 10.1109/OCEANS.2001.968315.

[14] Roger Stokey, “A Compact Control Language for Autonomous

Underwater Vehicles,” Woods Hole Oceanographic Institution,

Technical Report, Apr. 2005.

[15] T. Schneider and H. Schmidt, “The Dynamic Compact Control

Language: A compact marshalling scheme for acoustic

communications,” in OCEANS 2010 IEEE - Sydney, May 2010, pp. 1–

10. doi: 10.1109/OCEANSSYD.2010.5603520.

[16] T. Schneider, S. Petillo, H. Schmidt, and C. Murphy, “The Dynamic

Compact Control Language version 3,” in OCEANS 2015 - Genova,

May 2015, pp. 1–7. doi: 10.1109/OCEANS-Genova.2015.7271608.

[17] “WhatIsGoby · GobySoft/goby Wiki,” GitHub.

https://github.com/GobySoft/goby (accessed Apr. 28, 2022).

[18] “Transmission Control Protocol,” Internet Engineering Task Force,

Request for Comments RFC 793, Sep. 1981. doi: 10.17487/RFC0793.

[19] “Internet Protocol,” Internet Engineering Task Force, Request for

Comments RFC 791, Sep. 1981. doi: 10.17487/RFC0791.

[20] L. Torgerson et al., “Delay-Tolerant Networking Architecture,” Internet

Engineering Task Force, Request for Comments RFC 4838, Apr. 2007.

doi: 10.17487/RFC4838.

[21] Michael B. Porter and Yong-Chun Liu, “Finite-Element Ray Tracing,”

Mystic Hilton, USA, Oct. 1994.

[22] Laura Lindzey, Isaac Vandor, Toby Schneider, Carl Kaiser, and

Michael Jakuba, “CoExploration for Adaptive AUV Survey,”

Singapore, Sep. 2022.

.

