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Abstract— A software framework, “ros_acomms,” has been 

developed to enable transport of ROS messages and other data 

across low-throughput and high-latency underwater acoustic 

links.  Messages are efficiently marshalled using user-provided 

configuration data, if available, or automatically via message 

introspection.  A modular set of modem drivers, media-access-

control engines, and message queues transport messages from one 

system to another via a modem.  It supports message 

fragmentation, positive acknowledgment, and custody-transfer 

routing.  It also includes an acoustic link simulator that uses a ray-

tracing model to estimate link performance and latency.  While it 

targets the WHOI Micromodem family of acoustic modems, the 

modular modem driver implementation has been leveraged to 

support low-throughput Iridium satellite links and other acoustic 

modems.  It has been tested and used operationally at sea for 

remote redirection of autonomous underwater vehicles while 

providing operators with near real time vehicle telemetry and 

sensor data. 
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I. INTRODUCTION 

Ros_acomms provides a complete framework for efficiently 
transferring messages across underwater acoustic links.  Robot 
Operating System (ROS) [1] messages can be sent with minimal 

configuration, and the included encoder/decoder (codec) engine 
will use message introspection to determine how field values 
should be encoded.  All ROS message primitive types are 
supported, including arrays and nested ROS messages.  Users 
may optionally provide additional information about the fields 
in a message (such as the range of expected values or desired 
resolution) via a configuration file, which is used to compress 
and bit-pack data more efficiently. 

Reliable transport (via positive acknowledgement and 
retransmission) and large message fragmentation are provided.  

This allows sending files and messages larger than the maximum 
acoustic packet size. 

MOOS messages [2] may also be transferred via a 
companion package, the moos_bridge, and the message coding 
scheme can also be used to encode arbitrary Python dictionaries. 

The framework is designed to co-exist with other acoustic 
traffic, including interoperating with older standards such as the 
Compact Control Language (CCL). 

It is designed against the WHOI Micromodem acoustic 
modems [3], [4], although the modular modem driver 
implementation supports integrating other modems.  The system 
has also been extended to support low-throughput Iridium 
satellite communication links.  There is a companion package, 
ros_iridium, that uses the ros_acomms message queuing and 
marshalling system to transfer messages via the Iridium satellite 
network.   

In addition to supporting the WHOI Micromodem, it 
includes an acoustic communication simulator to facilitate 
software-only development and testing. 

It is released under open source (LGPL/AGPL) licenses. 

II. BACKGROUND 

A. Message Marshalling 

Underwater acoustic communication links are inherently 
low-throughput and high-latency when compared with the radio 
links commonly used with terrestrial robots [5].  Thus, care is 

required when using underwater acoustic communication for 
robot telemetry, command, and control.  Often, data must be 
compressed prior to transmission to communicate effectively. 

Many commonly-used data marshalling protocols are not 
optimized for low-throughput links.  Formats such as JSON [6], 
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MessagePack [7], and Concise Binary Object Representation 

(CBOR) [8] provide fully-descriptive encoded forms: message 

content can be extracted without knowing the schema used to 
encode it.  While this feature offers obvious advantages, it 
requires embedding message type information within the 
message, which increases the amount of data that must be 
transmitted.  This overhead is undesirable and generally 
unacceptable when using very-low-throughput links. 

Formats such as Google Protocol Buffers are not fully 
descriptive and provide a mixed optimization for size and 
encoding/decoding speed [9], but encoding/decoding speed is 

not typically a limiting factor when transferring data via acoustic 
links. 

Several marshalling systems targeted at robotics applications 
improve upon these schemes, but still carry unacceptable 
overhead due to the use of header information and failing to bit-
pack field data.  The ROS1 ros_comm messaging scheme is 
simple, not fully descriptive, and relatively compact.  However, 
each non-array field type has a fixed bit length of at least one 
byte, and each message includes header information.  ROS2 uses 
DDSI-RTPS, which also includes header information and byte-
aligned, fixed-length fields [10].  Lightweight Communications 

and Marshalling (LCM) includes a marshalling scheme that is 
relatively efficient, but it prepends a 64-bit fingerprint to each 
message to identify its type.  It is also optimized for speed, and 
uses byte-aligned fields [11]. 

Several marshalling schemes have been developed 
specifically for transporting data over acoustic links.  One early 
effort at standardization was the Compact Control Language 
(CCL) [12], which is still widely used with the REMUS family 

of AUVs.  CCL was designed to match the contemporary 
capabilities of the WHOI Micromodem-1 and its predecessor, 
the Utility Acoustic Modem (UAM) [13].  As a result, all 

messages are exactly 32 bytes in length, which corresponds with 
the length of a legacy Micromodem FSK packet.  All message 
types are defined in a specification document [14], and specific 

field encoder/decoders are provided as C functions.  CCL is 
often coupled with a basic call-and-response query system to 
request messages from a remote node, or a periodic transmission 
cycle. 

A more recent development in this area is the Dynamic 
Compact Control Language (DCCL), which provides a runtime-
configurable mechanism for marshalling messages based on 
extensions to Google Protobuf message definitions [15], [16].  
This system does not require fixed message sizes.   It is often 
coupled with Goby, a middleware library that provides modem 
interfaces and networking functions [17].  DCCL formed much 

of the inspiration for the codec system described here. 

The implementations of both CCL and DCCL assume that 
all message types are registered with a central authority.  In 
practice, many developers define new message types and either 
use reserved private message identifiers that are set aside by the 
registration authority or simply use otherwise-unused identifiers 
with the assumption that their systems won’t have to 
interoperate.  Additionally, many acoustic modem users do not 
use any of these standardized message marshalling schemes and 
instead define their own. 

Ros_acomms specifically addresses this issue by allowing 
different sets of message encodings to be used for 
communication with different remote modems.  Additionally, 
there is a CCL-compatible codec included in the ros_acomms 
suite, so that CCL messages can be sent and received.  The codec 
system was designed with DCCL compatibility in mind, and 
early versions included some rudimentary DCCL 
interoperability, but this has not been maintained due to a lack 
of current applications. 

B. Message queueing and quality of service 

On practical communication links, it is often not possible to 
instantly transfer all data required by an application.  To address 
this limitation, which is particularly concerning when using 
underwater acoustic links that are low-throughput and high-
latency, ros_acomms implements a message queuing system 
that supports configurable-length queues with runtime-
adjustable message prioritization. 

Queues allow messages to be sent in first-in-first-out (FIFO) 
order or last-in-first-out (LIFO) order.  In many robotic 
applications, such as sending vehicle status or pose information, 
newer messages render older ones obsolete, and the LIFO queue 
ensures that unnecessary older data aren’t sent. 

Message prioritization can ensure that more important data 
are transferred sooner.  Ros_acomms allows users to specify a 
default priority for each topic being sent via the configuration 
file, and these priorities can be changed at runtime via acoustic 
messages. 

C. Fragmentation, Reliable Transport, and File Transfer 

Communication links typically have a maximum 
transmissible unit (MTU), which is the largest amount of data 
that can be sent in a single unit such as a frame or packet. To 
send messages or data larger than the MTU on a given link, data 
must be fragmented at the transmitter and reconstructed at the 
receiver.  

Many existing fragmentation protocols are not optimized 

for the limited channel reliability, high latency, and low 

throughput associated with underwater acoustic links. The 

Transmission Control Protocol (TCP), for example, is 

commonly used in conjunction with the Internet Protocol (IP) 

and provides end-to-end reliable and ordered transport of a 

stream of bytes. TCP specifies data headers that are minimally 

20 bytes long per datagram if no options fields are utilized[18]; 

this is an acceptable amount of overhead for an IP datagram that 

may contain up to 65,535 bytes [19]. In the context of an 

acoustic link where the maximum frame size is typically 

between 32 and 256 bytes and the maximum packet size is 

typically less than a few kilobytes, 20 bytes of header per frame 



is a significant cost to the total data throughput. The three-way 

handshake to establish a TCP connection is another feature that 

penalizes high-latency and unreliable links. In the event that 

communication opportunities are sporadic and only allow time 

for a single transmission, it becomes critical to include data in 

the initial transmission rather than dedicating it to the specific 

sync sequence. 

The specification for a Delay-Tolerant Networking 

Architecture (DTN) addresses many of the shortcomings that 

TCP and other Internet protocols exhibit when operating on 

unreliable or high latency links [20].  The ros_acomms 

fragmentation protocol draws inspiration from features of DTN 

such as performing custody transfers of bundles between nodes 

in the network, delivering messages in order of priority, and 

selectable delivery options in order to cater to the circumstances 

of a particular acoustic environment.  However, DTN is not 

optimized for low-throughput links such as underwater acoustic 

links. 

D. Acoustic modem features 

Ros_acomms supports modern acoustic packet protocols 
available on the WHOI Micromodem-2, in addition to legacy 
acoustic packets also supported by the Micromodem-1.  
Ros_acomms effectively leverages the Flexible Data Packet 
system on the Micromodem-2, which allows sending a single 
acoustic packet that uses multiple error correction coding levels 
to include both high-reliability/low-throughput data and lower-
reliability/higher throughput data.  This is commonly used to 
allow a single packet to include critical information, such as 
AUV position and status, in the high-reliability section, and 
science or image data in the high-data-rate section. 

Acoustic timing and ranging features of the Micromodem 
are also supported, allowing ros_acomms to integrate with 
acoustic navigation systems. 

III. ARCHITECTURE 

A. Message transport flow 

A primary goal of the project is to support “transparent”, bi-
directional transport of ROS messages published on one 
platform, such as an autonomous underwater vehicle, and re-
publishing them on a different platform, such as different 

vehicle or operator computer (and vice-vera).  Configuration of 
the system is done via rosparams, typically as a YAML file 
containing a list of ROS topics to transport along with 
instructions for how to encode those messages, as shown in 
Listing 1.  

Messages are transferred as described below and in Figure 
1.  On the transmitting system: 

1) A ROS message is published on a topic 

2) The message queue node is subscribed to this topic. 

3) When a new ROS message is received, the message 

queue node uses a message codec to convert the data in the 

message to a compact representation by using field codecs to 

encode each message field.  This is done recursively for nested 

ROS messages. 

4) The media access control (MAC) node, typically a time-

division-multiple-access (TDMA) MAC, queries the message 

queue node to retreive the highest priority message(s). 

5) The message queue node identifies the highest priority 

message and uses an appropriate packet codec to pack as many 

messages as will fit into one modem packet for transport. 

- codec_name: default 

  match_dest: [100] 

  except_src: [1, 5]  

  packet_codec: ros 

  miniframe_header: [0x12] 

  message_codecs: 

    - id: 1 

      message_codec: default 

      subscribe_topic: "/status" 

      publish_topic: "/from_acomms/status" 

      ros_type: "my_auv_pkg/Status" 

      default_dest: 99 

      queue_order: lifo 

      queue_maxsize: 1 

      priority: 100 

      fields: 

        header: 

          codec: msg 

          ros_type: "std_msgs/Header" 

          fields: 

            stamp: 

              codec: rostime 

        latitude: 

          codec: float 

          min_value: -90 

          max_value: 90 

          precision: 5 

        longitude: 

          codec: float 

          min_value: -180 

          max_value: 180 

          precision: 5 

        amperage: 

          codec: linspace 

          min_value: 0 

          max_value: 10 

          resolution: 0.2 

 

 

Figure 1: Message flow within ros_acomms 

Listing 1: Example ros_acomms codec and queue configuration. 



6) The MAC node queues the modem packet for transmit 

using the modem driver (the acomms driver node), which 

interfaces to the modem hardware to send the packet 

acoustically.  (Alternately, when using the acoustic modem 

simulation built into ros_acomms, the acoustic communcations 

simulator node replaces the modem driver node.) 

 
On the receiving system: 

7) A packet is received by the acoustic modem. 

8) The acomms driver node handles the incoming packet 

and publishes a ReceivedPacket message. 

9) The packet dispatch node subscribes to these messages. 

10) The packet dispatch node evaluates metadata on the 

packet message (such as the acoustic modem source address 

and optional header bytes) and determines which packet codec 

should be used to decode the packet. 

11) The packet codec uses one or more message codecs to 

decode the received data into ROS message(s). 

12) The packet dispatch node publishes the message on a 

ROS topic. 
 

An arbitrary number of systems are supported, each of which 
can both send and receive messages.   

Custody-transfer routing can be performed by sending 
messages to an intermediate platform, which then sends those 
messages on to a subsequent platform. This can be used to send 
messages over different links, such as an acoustic channel 
operating at a different frequency or a satellite link. 

B. Message Marshalling and Codecs 

Ros_acomms uses a layered set of encoders/decoders 
(codecs) that operate at the field, message, and packet level.  
Each message consists of multiple named fields, each of which 
contains a datum.  Each field may contain a primitive type, such 
as an integer or string, or nested message type.  Packets 
correspond to the atomic unit of data that can be sent by a 
modem at one time.  A packet may contain a single message, 
multiple messages, or part of a fragmented message. 

The codecs are implemented using base classes such that 
novel field codecs, message codecs, and packet codecs may be 
developed.  For example, packet codecs can be written to 
interoperate with other standards, such as CCL. 

The selection of which field codecs to use on a message is 
determined via a configuration file, as shown in Listing 1.  If no 
field codecs are specified for a message in the configuration, the 
message codec engine will introspect the ROS message being 
sent and use appropriate field codecs for each field in the 
message.  Even when using introspection, the resulting message 
size is smaller than the default ROS message serialization, 
largely because ROS message serialization adds headers and 
byte aligns all fields, including booleans and 7-bit ASCII string 
characters. 

Each field in the message can be assigned a codec with 
parameters, which improves the efficiency of message 
compression.  Both lossy and lossless codecs are available for 

most ROS message field types.  For example, floating point 
numbers may be encoded as fixed-decimal values or linearly-
spaced ranges.  Strings are encoded by default with bit-packed 
7-bit ASCII, but users may select a 6-bit ASCII encoding that 
includes only uppercase letters and fewer special and 
punctuation characters.  Similar options exist for most field 
codecs. 

C. Fragmentation, Reliable Transport, and File Transfer 

The ros_acomms fragmentation protocol ensures reliable 
transport of ROS messages that, when encoded, are larger than 
the MTU of the link, which can vary. The concept for transfers 
models DTN; a ROS message is analogous to a bundle in DTN. 
The message can be fragmented to a variable block size to 
accommodate varying quality links and the queued fragments 
are transmitted in order of priority to reachable link destinations. 
It also borrows an acknowledgement scheme similar to TCP 
Selective Acknowledgement to minimize the amount of data 
that must be re-transmitted when the receiver ends up with 
discontinuous fragments of the original message. 

Recognizing the bandwidth constraints of underwater 
acoustic links, the protocol is designed to minimize the required 
size of fragment headers, as described in Tables 1-3. Transfers 
are organized into sessions and utilize a 14-byte session start 
header, a 5-byte session continuation header, and an 
acknowledgement header that is minimally 6 bytes, but varies 
based on the number of discontinuous block segments being 
acknowledged. In practice, each header requires an additional 
byte prepended: the ros_acomms message identifier. 

TABLE I.  SESSION START HEADER 

Field Size 

Session ID 8-bits 

Session Source ID 8-bits 

Session Dest. ID 8-bits 

Timestamp 32-bits 

Block size (bits) 8-bits 

Message size (blocks) 16-bits 

First block index 16-bits 

Last block index 16-bits 

TABLE II.  SESSION CONTINUATION HEADER 

Field Size 

Session ID 8-bits 

First block index 16-bits 

Last block index 16-bits 

TABLE III.  SESSION ACKNOWLEDGEMENT HEADER 

Field Size 

Ack. Flag 1-bit 

N_Blocks 7-bits 

Session ID 8-bits 

Block start index[0] 16-bits 

Block end index[0] 16-bits 

block start index[n] 16-bits 

Block end index [n] 16-bits 

 

Each session is uniquely identified through the 8-bit session 
ID combined with the source ID. In this manner, each individual 
source is able to keep track of open sessions and avoid re-using 



a session ID that has not been acknowledged. To avoid the 
penalty of long two-way-travel-times, a sender may include data 
up to the full size of a packet with the session start header. 
Additionally, the sender may proceed to send packets continuing 
the session before waiting to receive acknowledgement if so 
configured by the medium access controller node.  

Acknowledgement headers comprise a list of received 
blocks as described by the start and end index for each 
contiguous section in multiples of the block size. The ack flag is 
set to describe blocks as positively acknowledged, or 
“ACKED”, and it may be cleared to indicate that the list will 
describe only the blocks that are still outstanding, or 
“NACKED”. The decision is made to send whichever results in 
the shorter of the two lists. Acknowledgement containing the 
zeroth block of a message indicates acknowledgement of the 
session start header back to the sender. Specifically sending a 
null acknowledgement for the zeroth block indicates to the 
sender that one or more session continuation packets were 
received for which the receiver does not have the full session 
start header information and will trigger a retransmit from the 
sender. 

D. Software components and libraries 

Ros_acomms is designed using modular ROS nodes that 
allow individual functions to be developed in a research setting 
without requiring changes to the rest of the system.  For 
example, different media access control methods can be 
implemented by replacing only the MAC node.   

Additional modems can be supported by any node 
implementing the modem driver interface, which has been used 
to develop drivers for Sonardyne acoustic modems and Iridium 
satellite modems.  This interface also allows the acoustic 
communication simulator to be used in place of actual acoustic 
modems. 

Ros_acomms incorporates several separately packaged 
libraries.  Pyacomms, an interface library for the WHOI 
Micromodem, is used by the modem driver node to 
communicate with the modem.  The message and field codecs 
are packaged as “ltcodecs” (for “Low Throughput Codecs”).  
These libraries are maintained by the WHOI Acoustic 
Communications Group and published on PyPi. 

To operate over Iridium satellite links, a separate package, 
ros_iridium, provides a MAC node and modem drivers for 
Iridium modems and the RUDICS shore-side server.  The 
message queues and codecs from ros_acomms are used without 
modification. 

IV. SIMULATION 

The base ros_acomms package includes a simple acoustic 
communication simulator.  It uses the Bellhop raytracing model 
[21] to determine path transmission loss between two simulated 
modems. The effect of acoustic collisions (interference from 
other modems transmitting at the same time) is modeled.     
Configurable, time-varying noise is added, and the signal 
margin at the receiver is calculated.  This is then used with an 
empirically-derived communication performance model to 

simulate channel performance, including both latency and 
packet success or failure. 

V. DEPLOYMENTS 

To date, ros_acomms has been deployed on a variety of 
oceanographic platforms, including REMUS AUVs, 
WaveGlider ASVs, DSV Sentry, acoustic gateway buoys, shore-
side systems, and shipboard operator consoles.  It has been used 
operationally to support research and scientific objectives.   

A more detailed discussion of its use in the NOAA 
CoExploration program may be found in [22].  

VI. FUTURE DEVELOPMENT 

Ros_acomms is being used to perform underwater acoustic 
networking research, and as this matures, additional networking 
capabilities will be incorporated into the package. 

A ROS Actions proxy is under development to facilitate 
remote command execution.  It builds upon the fragmentation 
and acknowledgment system to provide asynchronous progress 
notifications as messages are passed between systems. 
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